遥感影像处理的步骤
第一步:几何精校正与图像配准
引起图像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。
第二步:图像融合
将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。
第三步:图像镶嵌与裁剪
(1)镶嵌
当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形成一幅或一系列覆盖全区的较大的图像。在进行图像的镶嵌时,需要确定一幅参考图像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大时,可以利用直方图均衡、色彩平滑等使得接边尽量一致,但用于变化信息提取时,相邻图像的色调不允许平滑,避免信息变异。
(2)裁剪
图像裁剪的目的是将研究之外的区域去除,常用的是按照行政区划边界或自然区划边界进行图像的分幅裁剪。
第四步:大气校正
遥感图像在获取的过程中,受到如大气吸收与散射、传感器定标、地形等因素的影响,且它们会随时间的不同而有所差异。因此,在多时相遥感图像中,除了地物的变化会引起图像中辐射值的变化外,不变的地物在不同时相图像中的辐射值也会有差异。利用多时相遥感图像的光谱信息来检测地物变化状况的动态监测,其重要前提是要消除不变地物的辐射值差异。
辐射校正是消除非地物变化所造成的图像辐射值改变的有效方法,按照校正后的结果可以分为2种,绝对辐射校正方法和相对辐射校正方法。绝对辐射校正方法是将遥感图像的DN(Digital Number)值转换为真实地表反射率的方法,它需要获取图像过境时的地表测量数据,并考虑地形起伏等因素来校正大气和传感器的影响,因此这类方法一般都很复杂,目前大多数遥感图像都无法满足上述条件。相对辐射校正是将一图像作为参考(或基准)图像,调整另一图像的DN值,使得两时相图像上同名的地物具有相同的DN值,这个过程也叫多时相遥感图像的光谱归一化。这样就可以通过分析不同时相遥感图像上的辐射值差异来实现变化监测。因此,相对辐射校正就是要使相对稳定的同名地物的辐射值在不同时相遥感图像上一致,从而完成地物动态变化的遥感动态监测。广西善图科技有限公司