紫外波段水汽拉曼散射
紫外波段的波谱范围介于10~380nm。大气水汽与紫外波段电磁波的相互作用主要表现为散射作用。当电磁波波长远大于散射介质半径时,介质的散射作用可以忽略不计。当电磁波波长约为散射介质半径的10~1000倍时,瑞利(Rayleigh)散射占据主导作用。当电磁波波长与散射介质半径相当时,米氏(Mie)散射占据主导作用。当电磁波波长小于散射介质半径时,几何散射模型更适用于描述散射问题。瑞利散射、米氏散射和几何光学散射模型都是基于弹性散射角度考虑的散射模型,即散射过程中电磁波的频率保持不变,仅发生传播方向的变化。大气水汽分子的半径为4×10-10m,远小于可见光近红外波段,甚至是紫外波段的波长,因此大气水汽分子对这些波段的电磁波产生的弹性散射作用可忽略不计。
在非弹性散射的范畴,大气水汽分子对紫外波段具有特殊的散射作用,其中最为典型的散射作用为拉曼(Raman)散射。与弹性散射不同,非弹性散射在散射前后电磁波的频率发生改变,散射过程保持动量平衡,但是动能发生改变。非弹性散射的般原理可以描述为:当光子照射到分子时,光子将分子从一个基态激发到一个虚拟的能级,当激发的分子释放一个光子后返回到一个不同于基态的振动状态,新的状态与基态之间的能量差使得释放的光子频率不同于入射的光子频率。根据能量守恒定律,如果新的状态比基态的能量高,则所激发的光子能量低于入射光子能量,激发的光子频率(波长)低(高)于入射光子的频率(波长),这种差异称为斯托克斯频移( Stokes Shift)。反之,如果新的状态比基态的能量低,则所激发的光子能量高于入射光子能量,激发的光子频率(波长)高(低)于入射光子频率(波长),这种情况称为反斯托克斯频移( Anti-Stokes Shift)。大气水汽的散射属于斯托克斯频移,其斯托克斯频移量为3654 cm-1,即对于波长为355nm的紫外波,其拉曼散射后的波长为407.8nm。