高光谱遥感数据监督分类怎么做?
高光谱图像数据将地物光谱信息和图像信息融为一体,其数据具有几何空间、光谱特征空间两类表达方式。广西善图科技有限公司
几何空间:直观表达每个像元在图像中的空间位置以及它周边像元之间的相互关系,为高光谱图像处理提供空间信息。
光谱特征空间: 高光谱遥感图像每个像元对应着多个成像波段的反射值。近似连续的光谱曲线表示为一个NN维向量,向量在不同波段值的变化反映了其代表的目标的辐射光谱信息,其优势是特征维度的变化和扩展性。我们处理将高光谱像元作为高维特征空间的数据点,根据数据的统计特性来建立分类模型,但是它的弱点是无法表达像元间的几何位置关系。
监督分类常用于高光谱图像数据的定量分析,其主要流程是:首先,利用分类器对已知类别机器对应的训练样本进行学习,获取各图像上各类别像元的分类特征;然后,选择适当的分类判据,根据分类的决策准则进行分类。
一般按以下步骤进行:
高光谱数据选择。
图像的预处理。即几何配准、校正等,确保获取正确光谱和几何信息。
确定地物种类。即根据提取的训练数据特征确定分类类别。
选择训练样本。
特征提取和特征选择。选择各类地物可区分性最强的特征从而提高分类精度。
选择合适的分类方法进行分类。
分类后处理。传统基于像元分类方法分类后可能存在大量噪声及孤立像元,根据地物的连续性,利用主成分滤波等方法减少该因素影响,从蹄提高分类精度。
分类结果评价。根据已知类别的测试数据类别与分类结果比较,确认分类的精度与可靠性。